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1 Recursive digit sum

In the following let the numbers ak be the coefficients of the base ten representation of
the natural number n, n =

∑

t

k=0 ak10
k.

Definition 1.1 (Digit sum) The digit sum of n, σ(n), is defined as

σ(n) :=
t
∑

k=0

ak

Definition 1.2 (Recursive digit sum) The Recursive digit sum of n, τ(n), is

defined as

τ(n) = n for n ≤ 9

τ(n) = τ(σ(n)) for n > 9

We have to show, that the above definition is well defined. This is done by showing,
that for any n, τ(n) converges to a number between zero and nine.
First we show that the argument in the recursive call to τ is strictly decreasing.

Lemma 1.1 (Argument to τ is strictly decreasing) The recursive argument σ(n)
to τ is strictly decreasing, such that for n > 9 the following inequality is valid

σ(n) < n

Proof

The proof is by induction on the maximum power of ten, t, in the base 10 repre-
sentation of n. So we want to prove that

∑

t

k=0 ak <
∑

t

k=0 ak10
k. Let P (t) be the

proposition that
t
∑

k=0

ak <

t
∑

k=0

ak10
k

”P (1) is true”

t
∑

k=0

ak = a0 + a1

< a010
0 + a110

1

=

t
∑

k=0

ak10
k

”P (t) implies P (t+ 1)” Assume, that the claim is valid for all numbers with a maximum
power equal to t. We prove that this implies that the claim is valid for all numbers

2



3

with a maximum power equal to t+ 1.

t+1
∑

k=0

ak =

t
∑

k=0

ak + at+1

<

t
∑

k=0

ak10
k + at+1

<

t
∑

k=0

ak10
k + at+110

t+1

=
t+1
∑

k=0

ak10
k

�

Proposition 1.1 (Convergence of τ)
The recursive digit sum τ(n) converges to a number between zero and nine.

Proof

”n ≤ 9”: Then, by definition, τ(n) is equal to n.
”n > 9”: Then the lemma shows, that the following inequality is valid:

σ(n) < n

By definition, τ is applied to the strictly smaller (non-negative) number σ(n). �
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In order to show some propositions on the recursive digit sum with respect to
divisibility by nine, consider the following table:

0
9 = 0, 00000...

1
9 = 1·101

9 · 10−1 = 10
9 · 10−1 = 9+1

9 · 10−1 = (1 + 1
9) · 10

−1 = 0, 11111...

2
9 = 2·101

9 · 10−1 = 20
9 · 10−1 = 18+2

9 · 10−1 = (2 + 2
9) · 10

−1 = 0, 22222...

3
9 = 3·101

9 · 10−1 = 30
9 · 10−1 = 27+3

9 · 10−1 = (3 + 3
9) · 10

−1 = 0, 33333...

4
9 = 4·101

9 · 10−1 = 40
9 · 10−1 = 36+4

9 · 10−1 = (4 + 4
9) · 10

−1 = 0, 44444...

5
9 = 5·101

9 · 10−1 = 50
9 · 10−1 = 45+5

9 · 10−1 = (5 + 5
9) · 10

−1 = 0, 55555...

6
9 = 6·101

9 · 10−1 = 60
9 · 10−1 = 54+6

9 · 10−1 = (6 + 6
9) · 10

−1 = 0, 66666...

7
9 = 7·101

9 · 10−1 = 70
9 · 10−1 = 63+7

9 · 10−1 = (7 + 7
9) · 10

−1 = 0, 77777...

8
9 = 8·101

9 · 10−1 = 80
9 · 10−1 = 72+8

9 · 10−1 = (8 + 8
9) · 10

−1 = 0, 88888...

9
9 = 1, 00000...

As can be seen from the table, dividing the coefficients ak by nine gives a fraction of
an inifinite period of one, like for example 4

9 with a fraction of an infinite period of one

with the value 4 (0, 44444...). But for n =
∑

t

k=0 ak10
k we also have to consider the

multiplication of ak by a power of 10 when dividing by nine. Intuitively, we see that
ak10

k

9 is an integer part and a fraction with the same value as ak

9 . We now state and
prove this formally.

Lemma 1.2 (Rule of nine for the form of multiplas of powers of ten)
For any integer a with 0 ≤ a ≤ 9 and for all k ≥ 0 we can write a

910
k on the following

form:

a

9
10k =

k
∑

r=1

a10k−r +
a

9

Proof

For any non-negative number k let the proposition P (k) be that

a

9
10k =

k
∑

r=1

a10k−r +
a

9

We prove the lemma by induction on k.
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”P (0) is true”
For k := 0 we have

a

9
10k =

a

9
100 =

a

9
1 =

a

9
=

0
∑

r=1

a100−r +
a

9

The sum
∑0

r=1 a10
0−r has no terms but is included in order to show the validity of the

form.

”P (1) is true”
For k := 1 we have

a

9
10k =

a

9
101 = a

10

9
= a

(

9 + 1

9

)

= a(1 +
1

9
) = a100 +

a

9
=

k
∑

r=1

a10k−r +
a

9

”P (k) implies P (k + 1)” Assume that P (k) is true. We then have

a

9
10k+1 =

(a

9
10k
)

· 10

=

(

k
∑

r=1

a10k−r +
a

9

)

· 10

= 10 ·

k
∑

r=1

a10k−r +
10a

9

= 10 ·

k
∑

r=1

a10k−r +
9a+ a

9

=
k
∑

r=1

a10k+1−r + a100 +
a

9

=
k+1
∑

r=1

a10k+1−r +
a

9

This proves P (k + 1). �

Lemma 1.3 (Rule of nine for the digit sum)
For any natural number n we have that 9|σ(n) if and only if 9|n.

Proof

For n =
∑

t

k=1 ak10
k we have that σ(n) =

∑

t

k=1 ak. Define z as σ(n) divided by 9:

z :=
σ(n)

9
=

∑

t

k=1 ak

9
=

t
∑

k=1

ak

9
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Now, for n

9 , we have the following:

n

9
=

∑

t

k=1 ak10
k

9

=
t
∑

k=1

ak10
k

9

=

t
∑

k=1

(

k
∑

r=1

ak10
k−r +

ak

9

)

by the lemma for the form

=

t
∑

k=1

(

k
∑

r=1

ak10
k−r

)

+

t
∑

k=1

ak

9

=

t
∑

k=1

(

k
∑

r=1

ak10
k−r

)

+ z

Note, that the sum
∑

t

k=1

(

∑

k

r=1 ak10
k−r

)

is an integer, so divisibility of n by 9 de-

pends on whether z is an integer or a fraction. Using this observation, we can now
prove the two claimed implications.

“9|σ(n) =⇒ 9|n”: Assume that 9|σ(n). Then z is an integer and therefore n

9 is an
integer and so we have, that 9|n.

“9|n =⇒ 9|σ(n)”: Assume that 9|n. Then z is an integer and therefore σ(n)
9 is an

integer and so we have, that 9|σ(n). �

Proposition 1.2 (Rule of nine for the recursive digit sum)
For any natural number n we have that τ(n) = 9 if and only if 9|n.

Proof

“9|n =⇒ τ(n) = 9”: Assume that 9|n. Then, by the lemma, 9|σ(n). So every ar-
gument in each of the recursive calls to τ is divisible by 9. Therefore τ(n) converges to
a number divisible by 9. This number must be 9 and hence τ(n) = 9.

“τ(n) = 9 =⇒ 9|n”: Assume that τ(n) = 9. If n ≤ 9 then n must be equal to 9 so 9|n.
This proves the proposition for n ≤ 9. For n > 9 we have, that τ(n) = τ(σ(n)). We
then use induction over the number of recursive calls, r, denoted by the subscript in τr.

Let P (r) be the proposition that τr(n) = 9 implies 9|n.

”P (1) is true”: For r = 1 we have that τ1(n) = τ0(σ(n)) = 9. So σ(n) must be
equal to 9 and therefore we have that 9|σ(n) and by the lemma we finally get that 9|n.
This proves that P (1) is true.
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”P (r) implies P (r + 1)”’: Assume, that for r recursive calls we have that if τr(n) = 9
then 9|n. For r + 1 recursive calls assume that τr+1(n) = τr(σ(n)) = 9. By induction
we can conclude that 9|σ(n) and then, by the lemma, we can conclude that 9|n. This
proves the induction step.

In all the proposition has been proved. �
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