Rule of nine for the recursive digit sum

Leiptr
https://www.leiptr.org
May 28, 2021

1 Recursive digit sum

In the following let the numbers a_{k} be the coefficients of the base ten representation of the natural number $n, n=\sum_{k=0}^{t} a_{k} 10^{k}$.

Definition 1.1 (Digit sum) The digit sum of n, $\sigma(n)$, is defined as

$$
\sigma(n):=\sum_{k=0}^{t} a_{k}
$$

Definition 1.2 (Recursive digit sum) The Recursive digit sum of $n, \tau(n)$, is defined as

$$
\begin{array}{ll}
\tau(n)=n & \text { for } n \leq 9 \\
\tau(n)=\tau(\sigma(n)) & \text { for } n>9
\end{array}
$$

We have to show, that the above definition is well defined. This is done by showing, that for any $n, \tau(n)$ converges to a number between zero and nine.
First we show that the argument in the recursive call to τ is strictly decreasing.
Lemma 1.1 (Argument to τ is strictly decreasing) The recursive argument $\sigma(n)$ to τ is strictly decreasing, such that for $n>9$ the following inequality is valid

$$
\sigma(n)<n
$$

Proof
The proof is by induction on the maximum power of ten, t, in the base 10 representation of n. So we want to prove that $\sum_{k=0}^{t} a_{k}<\sum_{k=0}^{t} a_{k} 10^{k}$. Let $P(t)$ be the proposition that

$$
\sum_{k=0}^{t} a_{k}<\sum_{k=0}^{t} a_{k} 10^{k}
$$

$" P(1)$ is true"

$$
\begin{aligned}
\sum_{k=0}^{t} a_{k} & =a_{0}+a_{1} \\
& <a_{0} 10^{0}+a_{1} 10^{1} \\
& =\sum_{k=0}^{t} a_{k} 10^{k}
\end{aligned}
$$

"P(t) implies $P(t+1)$ " Assume, that the claim is valid for all numbers with a maximum power equal to t. We prove that this implies that the claim is valid for all numbers
with a maximum power equal to $t+1$.

$$
\begin{aligned}
\sum_{k=0}^{t+1} a_{k} & =\sum_{k=0}^{t} a_{k}+a_{t+1} \\
& <\sum_{k=0}^{t} a_{k} 10^{k}+a_{t+1} \\
& <\sum_{k=0}^{t} a_{k} 10^{k}+a_{t+1} 10^{t+1} \\
& =\sum_{k=0}^{t+1} a_{k} 10^{k}
\end{aligned}
$$

Proposition 1.1 (Convergence of τ)

The recursive digit sum $\tau(n)$ converges to a number between zero and nine.
Proof
$" n \leq 9$ ": Then, by definition, $\tau(n)$ is equal to n.
$\overline{" n>9 "}$: Then the lemma shows, that the following inequality is valid:

$$
\sigma(n)<n
$$

By definition, τ is applied to the strictly smaller (non-negative) number $\sigma(n)$.

In order to show some propositions on the recursive digit sum with respect to divisibility by nine, consider the following table:

$$
\begin{aligned}
& \frac{0}{9}=0,00000 \ldots \\
& \frac{1}{9}=\frac{1 \cdot 10^{1}}{9} \cdot 10^{-1}=\frac{10}{9} \cdot 10^{-1}=\frac{9+1}{9} \cdot 10^{-1}=\left(1+\frac{1}{9}\right) \cdot 10^{-1}=0,11111 \ldots \\
& \frac{2}{9}=\frac{2 \cdot 10^{1}}{9} \cdot 10^{-1}=\frac{20}{9} \cdot 10^{-1}=\frac{18+2}{9} \cdot 10^{-1}=\left(2+\frac{2}{9}\right) \cdot 10^{-1}=0,22222 \ldots \\
& \frac{3}{9}=\frac{3 \cdot 10^{1}}{9} \cdot 10^{-1}=\frac{30}{9} \cdot 10^{-1}=\frac{27+3}{9} \cdot 10^{-1}=\left(3+\frac{3}{9}\right) \cdot 10^{-1}=0,33333 \ldots \\
& \frac{4}{9}=\frac{4 \cdot 10^{1}}{9} \cdot 10^{-1}=\frac{40}{9} \cdot 10^{-1}=\frac{36+4}{9} \cdot 10^{-1}=\left(4+\frac{4}{9}\right) \cdot 10^{-1}=0,44444 \ldots \\
& \frac{5}{9}=\frac{5 \cdot 10^{1}}{9} \cdot 10^{-1}=\frac{50}{9} \cdot 10^{-1}=\frac{45+5}{9} \cdot 10^{-1}=\left(5+\frac{5}{9}\right) \cdot 10^{-1}=0,55555 \ldots \\
& \frac{6}{9}=\frac{6 \cdot 10^{1}}{9} \cdot 10^{-1}=\frac{60}{9} \cdot 10^{-1}=\frac{54+6}{9} \cdot 10^{-1}=\left(6+\frac{6}{9}\right) \cdot 10^{-1}=0,66666 \ldots \\
& \frac{7}{9}=\frac{7 \cdot 10^{1}}{9} \cdot 10^{-1}=\frac{70}{9} \cdot 10^{-1}=\frac{63+7}{9} \cdot 10^{-1}=\left(7+\frac{7}{9}\right) \cdot 10^{-1}=0,77777 \ldots \\
& \frac{8}{9}=\frac{8 \cdot 10^{1}}{9} \cdot 10^{-1}=\frac{80}{9} \cdot 10^{-1}=\frac{72+8}{9} \cdot 10^{-1}=\left(8+\frac{8}{9}\right) \cdot 10^{-1}=0,88888 \ldots \\
& \frac{9}{9}=1,00000 \ldots
\end{aligned}
$$

As can be seen from the table, dividing the coefficients a_{k} by nine gives a fraction of an inifinite period of one, like for example $\frac{4}{9}$ with a fraction of an infinite period of one with the value $4(0,44444 \ldots)$. But for $n=\sum_{k=0}^{t} a_{k} 10^{k}$ we also have to consider the multiplication of a_{k} by a power of 10 when dividing by nine. Intuitively, we see that $\frac{a_{k} 10^{k}}{9}$ is an integer part and a fraction with the same value as $\frac{a_{k}}{9}$. We now state and prove this formally.

Lemma 1.2 (Rule of nine for the form of multiplas of powers of ten)

For any integer a with $0 \leq a \leq 9$ and for all $k \geq 0$ we can write $\frac{a}{9} 10^{k}$ on the following form:

$$
\frac{a}{9} 10^{k}=\sum_{r=1}^{k} a 10^{k-r}+\frac{a}{9}
$$

Proof
For any non-negative number k let the proposition $P(k)$ be that

$$
\frac{a}{9} 10^{k}=\sum_{r=1}^{k} a 10^{k-r}+\frac{a}{9}
$$

We prove the lemma by induction on k.
$" P(0)$ is true"
$\overline{\text { For } k:=0 \text { we have }}$

$$
\frac{a}{9} 10^{k}=\frac{a}{9} 10^{0}=\frac{a}{9} 1=\frac{a}{9}=\sum_{r=1}^{0} a 10^{0-r}+\frac{a}{9}
$$

The sum $\sum_{r=1}^{0} a 10^{0-r}$ has no terms but is included in order to show the validity of the form.
$" P(1)$ is true"
For $k:=1$ we have

$$
\frac{a}{9} 10^{k}=\frac{a}{9} 10^{1}=a \frac{10}{9}=a\left(\frac{9+1}{9}\right)=a\left(1+\frac{1}{9}\right)=a 10^{0}+\frac{a}{9}=\sum_{r=1}^{k} a 10^{k-r}+\frac{a}{9}
$$

$" P(k)$ implies $P(k+1) "$ Assume that $P(k)$ is true. We then have

$$
\begin{aligned}
\frac{a}{9} 10^{k+1} & =\left(\frac{a}{9} 10^{k}\right) \cdot 10 \\
& =\left(\sum_{r=1}^{k} a 10^{k-r}+\frac{a}{9}\right) \cdot 10 \\
& =10 \cdot \sum_{r=1}^{k} a 10^{k-r}+\frac{10 a}{9} \\
& =10 \cdot \sum_{r=1}^{k} a 10^{k-r}+\frac{9 a+a}{9} \\
& =\sum_{r=1}^{k} a 10^{k+1-r}+a 10^{0}+\frac{a}{9} \\
& =\sum_{r=1}^{k+1} a 10^{k+1-r}+\frac{a}{9}
\end{aligned}
$$

This proves $P(k+1)$.

Lemma 1.3 (Rule of nine for the digit sum)

For any natural number n we have that $9 \mid \sigma(n)$ if and only if $9 \mid n$.

Proof

For $n=\sum_{k=1}^{t} a_{k} 10^{k}$ we have that $\sigma(n)=\sum_{k=1}^{t} a_{k}$. Define z as $\sigma(n)$ divided by 9 :

$$
z:=\frac{\sigma(n)}{9}=\frac{\sum_{k=1}^{t} a_{k}}{9}=\sum_{k=1}^{t} \frac{a_{k}}{9}
$$

Now, for $\frac{n}{9}$, we have the following:

$$
\begin{aligned}
\frac{n}{9} & =\frac{\sum_{k=1}^{t} a_{k} 10^{k}}{9} \\
& =\sum_{k=1}^{t} \frac{a_{k} 10^{k}}{9} \\
& =\sum_{k=1}^{t}\left(\sum_{r=1}^{k} a_{k} 10^{k-r}+\frac{a_{k}}{9}\right) \quad \text { by the lemma for the form } \\
& =\sum_{k=1}^{t}\left(\sum_{r=1}^{k} a_{k} 10^{k-r}\right)+\sum_{k=1}^{t} \frac{a_{k}}{9} \\
& =\sum_{k=1}^{t}\left(\sum_{r=1}^{k} a_{k} 10^{k-r}\right)+z
\end{aligned}
$$

Note, that the sum $\sum_{k=1}^{t}\left(\sum_{r=1}^{k} a_{k} 10^{k-r}\right)$ is an integer, so divisibility of n by 9 depends on whether z is an integer or a fraction. Using this observation, we can now prove the two claimed implications.
$" 9|\sigma(n) \Longrightarrow 9| n ":$ Assume that $9 \mid \sigma(n)$. Then z is an integer and therefore $\frac{n}{9}$ is an integer and so we have, that $9 \mid n$.
$" 9|n \Longrightarrow 9| \sigma(n) ":$ Assume that $9 \mid n$. Then z is an integer and therefore $\frac{\sigma(n)}{9}$ is an integer and so we have, that $9 \mid \sigma(n)$.

Proposition 1.2 (Rule of nine for the recursive digit sum)

For any natural number n we have that $\tau(n)=9$ if and only if $9 \mid n$.
Proof
$" 9 \mid n \Longrightarrow \tau(n)=9 ":$ Assume that $9 \mid n$. Then, by the lemma, $9 \mid \sigma(n)$. So every argument in each of the recursive calls to τ is divisible by 9 . Therefore $\tau(n)$ converges to a number divisible by 9 . This number must be 9 and hence $\tau(n)=9$.
" $\tau(n)=9 \Longrightarrow 9 \mid n ":$ Assume that $\tau(n)=9$. If $n \leq 9$ then n must be equal to 9 so $9 \mid n$. This proves the proposition for $n \leq 9$. For $n>9$ we have, that $\tau(n)=\tau(\sigma(n))$. We then use induction over the number of recursive calls, r, denoted by the subscript in τ_{r}.

Let $P(r)$ be the proposition that $\tau_{r}(n)=9$ implies $9 \mid n$.
$" P(1)$ is true": For $r=1$ we have that $\tau_{1}(n)=\tau_{0}(\sigma(n))=9$. So $\sigma(n)$ must be equal to 9 and therefore we have that $9 \mid \sigma(n)$ and by the lemma we finally get that $9 \mid n$. This proves that $P(1)$ is true.
" $P(r)$ implies $P(r+1) "$ ': Assume, that for r recursive calls we have that if $\tau_{r}(n)=9$ then $9 \mid n$. For $r+1$ recursive calls assume that $\tau_{r+1}(n)=\tau_{r}(\sigma(n))=9$. By induction we can conclude that $9 \mid \sigma(n)$ and then, by the lemma, we can conclude that $9 \mid n$. This proves the induction step.

In all the proposition has been proved.

