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1 Recursive digit sum

In the following let the numbers a; be the coefficients of the base ten representation of
the natural number n, n = EZ=O ay10F.

Definition 1.1 (Digit sum) The digit sum of n, o(n), is defined as

t
o(n) = Z ay
k=0
Definition 1.2 (Recursive digit sum) The Recursive digit sum of n, 7(n), is

defined as

T(n)=n forn <9
7(n) = 7(co(n)) forn>9

We have to show, that the above definition is well defined. This is done by showing,
that for any n, 7(n) converges to a number between zero and nine.
First we show that the argument in the recursive call to 7 is strictly decreasing.

Lemma 1.1 (Argument to 7 is strictly decreasing) The recursive argument o(n)
to T is strictly decreasing, such that for n > 9 the following inequality is valid

o(n) <n
Proof

The proof is by induction on the maximum power of ten, ¢, in the base 10 repre-
sentation of n. So we want to prove that St _oar < S.4_oarl0F. Let P(t) be the

proposition that
t t
Z ap < Z ak 10k
k=0 k=0

"P(1) is true”

t
E ap = ag + ay
k=0

< aoloo + a1 101
t
= al0*
k=0

" P(t) implies P(t + 1)” Assume, that the claim is valid for all numbers with a maximum
power equal to t. We prove that this implies that the claim is valid for all numbers




with a maximum power equal to ¢ 4 1.
t+1 t
> =Y at a
k=0 k=0
t

< Z aklok + a1
k=0

t
<> ap10F + ap 10"
k=0
t+1

= Z ay10F
k=0

Proposition 1.1 (Convergence of 7)
The recursive digit sum T(n) converges to a number between zero and nine.

Proof
"n < 9”: Then, by definition, 7(n) is equal to n.
"n > 9”: Then the lemma shows, that the following inequality is valid:

o(n) <n

By definition, 7 is applied to the strictly smaller (non-negative) number o(n).



In order to show some propositions on the recursive digit sum with respect to
divisibility by nine, consider the following table:

§ = 0,00000...

e % 107 =410 =2 107 = (14 ) - 107 =0, 11111...
2= 2100 901 = 209071 = 1822 . 10-1 = (24 2). 107! = 0,22222..,
3= 30 071 =107 = 281071 = (34 3)- 107" = 0,33333...
4= 40 07t = 409071 = 36511071 = (44 4) - 1071 = 0,44444...
5=l 101 = 30107 = 452 107! = (54 3) - 107! = 0,55555...
§ = G100 101 =80 . 10-1 = 36 .90~ = (6 + §) - 107! = 0,66666...
T=T0 10t = 201071 = 8T .90~ = (74 J) - 107! = 0,77777...
S=810g0 1 = 803071 = 2258 101 = (84 §) - 107! = 0,88888...
3 =1,00000...

As can be seen from the table, dividing the coefficients a; by nine gives a fraction of
an inifinite period of one, like for example % with a fraction of an infinite period of one
with the value 4 (0,44444...). But for n = >;_,a;10* we also have to consider the
multiplication of aj by a power of 10 when dividing by nine. Intuitively, we see that
% is an integer part and a fraction with the same value as 9. We now state and
prove this formally.

Lemma 1.2 (Rule of nine for the form of multiplas of powers of ten)
For any integer a with 0 < a <9 and for all k > 0 we can write %10k on the following
form:

k
a. k k—r , @
—10% = 10 —
9 ZT_ . @ *9

Proof
For any non-negative number k let the proposition P(k) be that

k
a. ok k—r , @
—-10% = 10 —
9 ; “ 9

We prove the lemma by induction on k.



" P(0) is true”
For k£ := 0 we have

a k_ 4.9 _ 0—
§10 _510 1_— ZalO r

The sum 22:1 a10°~" has no terms but is included in order to show the validity of the
form.

"P(1) is true”
For k := 1 we have

10 9+1 1
glOkzgl()l:ag:a<i>:a(l—I—g)—alOO—l—— Zalo’““

”P(k) implies P(k + 1)” Assume that P(k) is true. We then have

a a
910kt = (-10’“) .10
9 9
- (Zalok r —) 10
1
—~10- Zalok—’“ 4 10a

—10- Zalok r 9a+a

- Z al0F+H1=" 4 100 + g
r=1

k+1 a
= Z aloFHi=r 4 9
r=1

This proves P(k + 1). O

Lemma 1.3 (Rule of nine for the digit sum)
For any natural number n we have that 9|o(n) if and only if 9|n.

Proof
For n = Y_,_, a;x10* we have that o(n) = 3_;_, aj. Define z as o(n) divided by 9:
o a(n) _ > et _ t Ak
. 9 9 Pt 9



n
9>

n 22:1 ar10*

Now, for 2, we have the following:

9 9

B Zt: a 10
B 9
k=1

t k
= Z (Z ap10F " + %) by the lemma for the form
k=1 \r=1

Note, that the sum 22:1 (Zle aklok_T) is an integer, so divisibility of n by 9 de-
pends on whether z is an integer or a fraction. Using this observation, we can now
prove the two claimed implications.

“Olo(n) = 9|n”: Assume that 9|o(n). Then z is an integer and therefore £ is an

9
integer and so we have, that 9|n.

“9n = 9|o(n)”: Assume that 9|n. Then z is an integer and therefore @ is an

integer and so we have, that 9|o(n). O

Proposition 1.2 (Rule of nine for the recursive digit sum)
For any natural number n we have that 7(n) =9 if and only if 9n.

Proof

“9n = 7(n) =9”: Assume that 9n. Then, by the lemma, 9|c(n). So every ar-
gument in each of the recursive calls to 7 is divisible by 9. Therefore 7(n) converges to
a number divisible by 9. This number must be 9 and hence 7(n) = 9.

“r(n) =9 = 9|n”: Assume that 7(n) = 9. If n <9 then n must be equal to 9 so 9|n.
This proves the proposition for n < 9. For n > 9 we have, that 7(n) = 7(o(n)). We
then use induction over the number of recursive calls, r, denoted by the subscript in 7.

Let P(r) be the proposition that 7,.(n) = 9 implies 9|n.

"P(1) is true”: For r = 1 we have that 7 (n) = m9(c(n)) = 9. So o(n) must be
equal to 9 and therefore we have that 9|c(n) and by the lemma we finally get that 9|n.
This proves that P(1) is true.



" P(r) implies P(r 4 1)”’: Assume, that for r recursive calls we have that if 7,(n) =9
then 9|n. For r + 1 recursive calls assume that 7,11(n) = 7.(6(n)) = 9. By induction
we can conclude that 9o (n) and then, by the lemma, we can conclude that 9|n. This
proves the induction step.

In all the proposition has been proved. O



